RL-TR-94-165
In-House Report
October 1994

ENCODING USER-DEFINED
PROBLEMS WITH SIPE-2

Karen M. Alguire

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19941129 051

} Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign natioms.

RL-TR-94-165 has been reviewed and is approved for publication.

SAMUEL A, DINITTO, JR., Chief
Software Technology Division

FOR THE COMMANDER:%/%‘M

JOHN A. GRANIERO

Chief Scientist
Command, Control, and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | cg n6R70s018s

Puibiic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and mairtaining the Gata needed, and completing and reviewing the colection of information. Send comments regarding this burden estimate or any other aspect of this
colection of inforration, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations andReports, 1215 Jefferson
Davig Highway, Sulte 1204, Arington, VA 22202-4302, and to the Office of Managernent and Budget, Paperwork Rediuction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1994 In-House Jun 93 - Mar 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ENCODING USFR-DEFINED PROBLEMS WITH SIPE-2 PE - 62702F
PR - 5581
6. AUTHOR(S) TA = 27
WU - 61

Karen M. Alguire

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rome Laboratory (C3CA) REPORT NUMBER
525 Brooks Road RL-TR-94-165

Griffiss AFB NY 13441-4505

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3CA) AGENCY REPORT NUMBER

525 Brooks Road
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Karen M. Alguire/C3CA (315) 330-4833

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Madmum 200 words)

This report describes work related to some experiments performed at Rome Laboratory
with generative planners. The main objective of the project was to provide an under-
standing of generative planners and familiarization with two different generative
planners, O-Plan2 and SIPE-2. The approach was to become proficient in the use of
the generative planning systems to define and solve new problems representative of
basic planning capability requirements. The Missionaries and Cannibals (MC) puzzle
was selected as a starting point because of its simplicity and it deals with simple
numerical calculations, an aspect we felt was relevant to application interests.
This report focuses on the work with SIPE-2, specifically, our experience encoding
the MC puzzle. The process of encoding problems in general is also addressed for
providing guidance in defining and solving user-defined problems with SIPE-2.

14. SUBJECT TERMS) 15. NUMBER OF PAGES
Generative Planners, Artificial Intelligence, Nonlinear Planning 48
Systems, Hierarchical Planning Systems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION |(20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED u/L

NSN 7540-01-280-5500 Standard Form 298 (Rev,_2-89)

Prescribed by ANS| Std. Z39-18
298-102

Contents

1

Introduction
1.1 Overview
1.2 Structure of Report

Approach Embodied in SIPE-2

21
2.2

2.3

SIPE-2's View of the Planning Problem
SIPE-2 Planning Features

2.2.1 Hierarchical Planning

2.2.2 Nonlinear Planning

2.2.3 Deductive Causal Theory

2.2.4 Planning Variables and Constraints
2.2.5 Plan Execution and Replanning
2.2.,6 Domain-Independence

How SIPE-2 Produces New Planning Levels

Encoding New Problems in SIPE-2

31
3.2
3.3
34

Definition of the Sort Hierarchy
Definition of the Initial World Predicates
Definition of the Operators

Definition of the Problem(s)

The Missionaries and Cannibals (MC) Puzzle

Modeling the MC Puzzle in SIPE-2

5.1
5.2
5.3

54

The MC Puzzle Objects

The MC Puzzle Predicates

The MC Puzzle Operators

5.3.1 Operators Controlling Movement
5.3.2 Operators Performing Movement

Domain Theory in the MC Puzzle

1/2

Accesion For

NTIS CRA& g
DTIC TAB
Unannounced [
Justification

By

Distribution |

Availability Codes

i Avail ai“v}ﬂc}m/‘or
Dist Special

A-

5.5 Problem Definition for the MC Puzzle
6 Generating SIPE-2 Plans for the MC Puzzle
7 Lessons Learned
7.1 The Use of Numerical Variables
7.2 The Encoding of Operators with Multiple Effects

7.3 The Phantomization of Goals Through Variable Instantiation

-8 Conclusion
9 Acknowledgments
References

Appendix Implementation of the Missionaries and Cannibals Puzzle in SIPE-2

1 Introduction

1.1 Overview

This report describes work related to some experiments performed at Rome Laboratory
with generative planners. This project was a collaborative effort between Dr. Carla
Ludlow!, and Karen Alguire and Albert Frantz2 from Rome Laboratory. The main
objective of the project was to provide an understanding of generative planners and
familiarization with two different generative planners, O-Plan2 ([O-Plan2 93], [Currie &
Tate 91]) and SIPE-2 ([Wilkins 93], [Wilkins 88]). A secondary objective of the project,
mainly a subproduct of the experimentation with both planners, was the comparison
between O-Plan2 and SIPE-2 [Ludlow 94]. The system versions used for the project
were O-Plan2 version 2.1 and SIPE-2 version 4.3 which was later upgraded to version

4.4,

Our approach to accomplishing the project objectives was to become proficient in the use
of the generative planning systems to define and solve new problems representative of
basic planning capability requirements. We decided the best way to assimilate
knowledge of the planning systems was to first go through the demonstration examples
provided with the systems and second, to focus on particular problems to encode starting
with simple classical planning problems in the Artificial Intelligence (AI) community.
The Missionaries and Cannibals (MC) puzzle was selected as a starting point because of
its simplicity and it deals with simple numerical calculations. This was an aspect we felt
was relevant to application interests.

The implementation of the MC puzzle as described in this report is the product of several
iterations. We encountered some problems implementing the MC puzzle in SIPE-2
related to the use of numerical variables, the encoding of operators with multiple effects,
and goal phantomization. These issues will be discussed in more detail in this report.
We also realized that we would not be able to solve the MC puzzle at all with the current
version of O-Plan?2 as it does not handle numerical calculations. Since system evaluation
was one of our objectives, we excluded the possibility of implementing our own
arithmetic symbolically in O-Plan2 (e.g., using successor and predecessor functions).
Issues related to the implementation of the MC puzzle in both SIPE-2 and O-Plan2 are
described in the paper “Looking at O-Plan2 and SIPE-2 Through the Missionaries and
Cannibals" [Ludlow & Alguire 94].

This report focuses on the work with SIPE-2, specifically, our experience encoding the
MC puzzle. The process of encoding problems in general is also addressed for providing
guidance in defining and solving user-defined problems with SIPE-2.

1.2 Structure of Report

Section 2 gives an overview of the SIPE-2 planning system developed by SRI
International and highlights some of the key program features. This includes a discussion
of SIPE-2's view of the classical planning problem and system features such as
hierarchical planning, nonlinear planning, deductive causal theory, planning variables and

1Dr. Ludlow's contribution to this project was sponsored under Rome Laboratory contract F30602-93-C-
0017.
2 Albert Frantz was involved in the project for only the first two months.

4

constraints, plan execution and replanning, and domain-independence. The algorithm
SIPE-2 uses to produce new planning levels is also presented.

Section 3 discusses the encoding of new problems with SIPE-2. This includes what
SIPE-2 expects as input and how one might go about defining the domain information.

Section 4 presents the problem statement, legal moves, and constraints of the MC Puzzle.

Section 5 describes how the MC puzzle was modeled in SIPE-2. This includes domain
information such as the object hierarchy, predicates, deductive rules, and operators
defined in the world. :

Section 6 explains how SIPE-2 uses the MC puzzle input to generate plans for solving the
problem.

Section 7 captures some lessons learned through our MC encoding experience. Several
aspects are discussed including the use of numericals, the encoding of operators with
multiple effects, and goal phantomization through variable instantiation.

2 Approach Embodied in SIPE-2

SIPE-2 (System for Interactive Planning and Execution) is a hierarchical, domain-
independent, nonlinear Al generative planning system developed by SRI International Al
Center. SIPE-2 provides a formalist for describing actions and utilizes the knowledge
encoded in this formalism, together with its heuristics for handling the combinatorics of
the problem, to generate plans to achieve given goals in diverse problem domains
[Wilkins 93]. It has mechanisms for reasoning about context-dependent effects, planning
variables, variable constraints, and resources. Temporal reasoning in SIPE-2 treats time
as a consumable resource whose consumption over parallel tasks is nonadditive.
Recently, SIPE-2 has been extended to cooperate with General Electric's temporal
reasoning system, Tachyon [Arthur ez al. 93]. SIPE-2 has some plan execution and
replanning capabilities. It is a component of SRI's CYPRESS system [Wilkins et al. 94]
which supports planning capabilities including action specification, generative planning,
reasoning with uncertainty, reactive plan execution, and dynamic replanning. Some of
the key program features of SIPE-2 mentioned here will be highlighted in Section 2.2.

2.1 SIPE-2's View of the Planning Problem

In the classical planning problem, the world is represented by states. States are snapshots
of the world at a particular point in time. Performing actions causes the world to move
from one state to the next. In the problem specification, it is necessary to define a
description of the initial state of the world, a set of allowable actions, and a set of goals.
The remaining task of the planner is to find a sequence of actions that will transform the
world from the initial state to the goal state.

SIPE-2's view of the planning problem closely resembles the classical planning problem.
Figure 1 depicts the approach embodied in SIPE-2.

1. state of 2. actionsone 3. problems
real world might take in real world
in real world

Predicates,
State Rules, |
Sort Hierarchy

Y

Operators,) sequehces
Causal Rules Planner of actions

Y

Problems |—m-

Figure 1. SIPE-2's View of the Planning Problem [Wilkins 93]

The inputs of the SIPE-2 system consist of a description of the initial state of the world, a
description of a set of actions, a problem descriptor, and a set of rules describing the
domain. The initial state of the world is represented by a sort hierarchy, a world model,
and a set of deductive rules. The sort hierarchy represents invariant properties of
perpetual objects and their structure in terms of classes with inheritance properties. The
world model is a set of predicates that hold over objects in the sort hierarchy. Deductive
rules, such as state and causal rules, are a mechanism for allowing effects of an event to
be automatically deduced. The system's representations of actions or abstractions that
may be performed in the domain are referred to as operators. While the inputs to the
planner attempt to model the "real world," current Al techniques cannot handle the full
complexity of the everyday world. In actuality, the problem being solved is always in a
limited environment that is usually an abstraction of the real world.

The output of SIPE-2 is a sequence of primitive actions to be carried out by whatever
agents are accepting instructions from the planner. The system automatically, or with
interactive control, generates plans (i.e., sequences of known actions) to solve the given
problem and supports replanning after unexpected occurrences during execution. A tree
of alternative plans is produced by the planner. The planner's search for a solution
consists of a simple depth-first search strategy until an acceptable plan has been
produced. It is important to note that the output of the planner should be considered
correct only to the extent that the encoded representation correctly reflects the real
environment.

2.2 SIPE-2 Planning Features
2.2.1 Hierarchical Planning

SIPE-2 is a hierarchical planner, meaning that it supports different levels of abstraction,
both in the planning process and in the description of the domain. In this context, a level
of abstraction is distinguished by granularity, or fineness of detail. Hierarchical planning
enables the planner to defer consideration of the details of a problem. The method is first
to construct an abstract plan leaving details unspecified, and then to refine these
components into more detailed subplans until enough of the plan has been filled in to
ensure success. This approach is advantageous because the planner can attempt to
develop a plan at a level that is not as computationally overwhelming. A simplistic
example would be the strategy one might use to plan a vacation. At the highest level, it is
enough to know in general terms when you want to go, where you want to go and what
you want to do, e.g., you want to go to Florida around the first week of December, and
you want to have fun! The next level of abstraction might be determining the details for
the when, where and what, e.g., fly into Ft. Myers December 1st in the morning, spend
eight days relaxing and sight-seeing on Marco Island, return home December 10th in the
evening. The next level of abstraction might consist of booking the flight reservations,
making hotel reservations, arranging for a rental car, and browsing through some Marco
Island Tour Guide books and maps for recreational ideas. At the lowest level of
planning, you will have a detailed vacation plan.

2.2.2 Nonlinear Planning

SIPE-2 is a nonlinear planner. Nonlinear planning is a technique of deferring decisions
on the ordering of plan elements until such decisions are forced. Thus, instead of
ordering the execution of the steps of a plan, the steps are left unordered until some
conflict is detected, at which time an ordering constraint is imposed to remove the

conflict. A plan is nonlinear if it contains actions that are unordered with respect to each
other, i.e., actions for which the planner has not yet determined an order and which may
be in parallel [Wilkins 93]. A planner's ability to avoid committing to a particular order
of action until further information regarding order is accumulated cuts down the
exponential search of all possible plan orderings. One problem that arises from nonlinear
planning is the detection of interaction between parallel actions. The planner must reason
about how actions that may take place concurrently interact with each other. Often, two
actions may interfere with each other if they are executed simultaneously. Nonlinear
planners must recognize and correct these situations.

2.2.3 Deductive Causal Theory

A powerful feature of SIPE-2 is the capability to encode a causal theory to represent and
reason about the effects of actions in different world states. By allowing the separation of
knowledge about actions from knowledge about causality, SIPE-2 provides a mechanism
for implementing a causal theory of the domain [Wilkins 88]. Deductive rules are used to
allow effects of an event to be deduced without being mentioned explicitly in operators.
Thus, the deduction of context-dependent effects is permitted. Since conditional effects
are deduced, operators can be applied to a wider range of situations. In complex
domains, this can potentially reduce the number of operators required by a strict STRIPS

~ assumption exponentially. By the STRIPS assumption, you would need a distinct
operator for every different context in which the operator might be used.

2.2.4 Planning Variables and Constraints

The use of planning variables allows certain objects or entities within a plan to be left
unspecified during the planning process. While the use of variables can cause
complications (e.g., determining when a predicate containing a variable is true), their use
can eliminate a huge search space since later information may determine the correct
instantiation for a variable without having to produce and check a plan for every
possibility. The search through possible variable instantiations can be further reduced if
the planner can narrow the set of possible instantiations by allowing the user to specify
constraints on the variables.

2.2.5 Plan Execution and Replanning

SIPE-2 supports plan execution and replanning. During execution of a plan, a person or
computer system monitoring the execution can specify what actions have been performed
and what changes have occurred in the domain being modeled. At any point during
execution, the execution monitor will accept two types of information about the domain:
an arbitrary predicate whose arguments are ground instances that is now true, false, or
unknown; and a local variable name that is now unknown. Once the description of the
unexpected situation has been accumulated, the execution monitor calls the problem
recognizer, which returns a list of all problems it detects in the plan. The general
replanner is then given the list of problems found by the problem recognizer and tries
certain replanning actions in various cases. :

2.2.6 Domain-Independence

SIPE-2 is a domain-independent planning system. This means that domain knowledge is
encoded in the formalization of the problem to be solved in whatever domain the user
chooses. Domain-independent planners must provide the user with a knowledge
representation language for encoding domain-specific knowledge. SIPE-2 provides a
powerful formalism for representing domains and automatically generating plans in them.

The performance of the planner depends on the quality of the domain knowledge encoded
by the user. The SIPE-2 system has been applied to the classic Al blocks world, planning
the actions of a mobile robot, planning the movement of aircraft on a carrier deck, travel
planning, construction tasks, and transportation planning for Joint Forces course-of-action
development. Because of its generic technology, SIPE-2 has the potential to affect a
large variety of problems in fields as diverse as manufacturing, construction, and the

military.
2.3 How SIPE-2 Produces New Planning Levels

Intelligent control of the search process has not been addressed in the development of
SIPE-2 partly because searching algorithms and heuristics need to be domain dependent
[Wilkins 88]. SIPE-2's automatic search mechanism searches through the space of partial
plans depth-first by planning level, with chronological backtracking. This
straightforward search does not perform well on large, complex problems if a solution is
hard to find. However, SIPE-2 has been designed and built to support interactive
planning, and SIPE-2 operators can be used to control search through the use of
preconditions, conditions, or metalevel operators.

The search is responsible for balancing time spent checking critics and the global
constraint network with time spent planning. The default is to check the critics once
every planning level and before a final plan is accepted. The frequency of critic
application can be set by the user through interface command menus.

Figure 2 depicts how the search algorithm produces a new planning level from the
previous level.

Apply Operators to
Nonprimitive Nodes
Phantor / Copstralpt- -
ér:):fsn 1ze Satisfaction [— P hét:)t:lr;nze ——
\ Copy Other Nodes, Critic
Recalcqlate
Deductions if primitive plan with
new instantiations
Resource Problematic-)
— Criti ! Interaction |— Valid Plan at Next
It Critic Planning Level

Figure 2. SIPE-2's Algorithm for Producing a New Planning Level [Wilkins 93]

The search begins by trying to phantomize any goal in the original problem (i.e., make a
goal true without applying an operator). It then applies an operator to each node in the
plan that requires further specialization (i.e., to each nonprimitive goal, process, or
choiceprocess node). During this application of operators, any intervening nodes (e.g.,
precondition nodes, primitive nodes) adjacent to the nodes are copied to the new plan.
The deduced effects of the copied nodes are recalculated, since they may change in the
different context specified by the more detailed plan. The search checks for problems
any of these operations may cause, and may change phantom nodes back to goals, as well

as rejecting operator applications that falsify preconditions already present in the
remainder of the plan.

After the above operations have created a plan at the new planning level, the critics are
called on the new detailed plan. They add any constraints necessary to ensure that the
global constraint network can be satisfied, then try to phantomize goal nodes, then check
for resource conflicts, and finally check for problematic interactions among unordered
actions. Both of the last two operations may add ordering constraints to fix conflicts or
problems, which in turn may lead to nodes being added or removed from the plan.

SIPE-2 continues in this fashion until all goals have been successfully expanded which
gives rise to the final generated plan.

10

3 Encoding New Problems In SIPE-2

SIPE-2 models the classical definition of the planning problem as previously explained in
Section 2.1. Also previously noted, SIPE-2's form of input is a description of the initial
state, a description of a set of actions, a problem descriptor, and a set of rules describing
the domain. The task of encoding new problems to solve with SIPE-2 requires a working
knowledge of the SIPE-2 language syntax (an extension of Backus-Naur Form (BNF)
written by Donald Mitchell). Both a frame-based representation and first-order logic are
used to describe the domain. The purpose of this section is to provide some basic
guidelines and instructions for encoding domain knowledge as input to SIPE-2. The user
(i.e., programmer) is referred to the SIPE-2 manual [Wilkins 93] and the book Practical
Planning [Wilkins 88] for more detailed documentation on programming in the SIPE-2
language.

One of the first steps in defining the input for solving a new problem is to create a
specification of the problem. One should identify the initial state, the goal state, and the
nature of the actions that will advance the planner through intermediate states. For
example, if the problem I want to solve is to evacuate all the people from a location X,
my initial state is that everyone is at X, my goal state is that no-one is at X anymore, and
in order to get from my initial state to my goal state, there will be movement from
location X to some other location. Something to remember is that SIPE-2's output will be
correct only to the extent that the user's representation correctly reflects the real
environment. Additionally, the original specification of the problem may need
modification or refinement in order to encode the problem input more efficiently.

The input information required by SIPE-2 is stored in a file, or multiple files, created by
the user and must be loaded into the SIPE-2 system. This information consists of the
following:

1. Definition of the sort hierarchy

2. Definition of the initial world predicates
3. Definition of the operators

4. Definition of the problem(s)

These topics will be discussed in more detail in the following subsections beginning with
definition of the sort hierarchy.

3.1 Definition of the Sort Hierarchy

One input requirement of SIPE-2 is that it must be given information about the objects
that exist in the domain. The sort hierarchy is the mechanism in SIPE-2 for representing
these objects. As well as representing perpetual objects that exist in the domain, the sort
hierarchy describes their invariant properties and their structure in terms of classes with
inheritance properties.

The sort hierarchy is composed of class and object nodes. Classes define sets of objects
with default properties common to all the individual objects belonging to that particular
class. The links in the sort hierarchy should be interpreted as IS-A links meaning that
each individual is an instance of the class or classes of which it is a member.

Properties of objects should be represented in the sort hierarchy if they are static and if
they can be represented as unary or binary predicates. By representing domain objects
along with most of their static properties as nodes linked in a sort hierarchy, SIPE-2 is
able to incorporate the advantages of frame-based systems (e.g., inheritance, efficiency),

11

while retaining the power of predicate calculus for representing properties that do vary.
Properties of objects that might change as actions are performed (i.e., dynamic properties)
and static properties that require more than two arguments should be represented as
predicates in the restricted form of first-order predicate calculus provided in SIPE-2.

Class nodes can have the following slots: SUBCLASSES, INSTANCES, PARENT (or
PARENT-CLASS), and PROPERTIES. Object nodes only have the slots: PARENT (or
PARENT-CLASS), and PROPERTIES. An example of some class and object definitions
is as follows:

CLASS: Animals
Subclasses: Lions, Tigers, Bears
END-CLASS

CLASS: Lions
Parent-Class: Animals
Properties:

Habitat = Land,;
Instances: Lionl, Lion2
END CLASS

OBJECT: Lionl
Parent-Class: Lions
Properties:
Color = Brown,
Diet = Meat;
END OBJECT

In this example, Lion1 is an instance of the class Lions with the properties that it has a
color of brown and a diet of meat. Through inheritance from the parent-class Lions,
Lion1 also has a habitat of land.

Once the objects in the world have been defined with the sort hierarchy, one must
describe the initial state of the world. This is accomplished in the SIPE-2 language by
defining initial world predicates as described next.

3.2 Definition of the Initial World Predicates

Initial world predicates are statements that describe the initial state of the world. Initial
world predicates are divided into static and dynamic predicates depending on whether any
of their truth values change over time as actions are performed. As stated in Section 3.1,
properties of objects that might change as actions are performed should be represented as
predicates, specifically dynamic predicates. Additionally, static properties of objects that
cannot be represented as unary or binary predicates should be represented as static
predicates.

Predicates can also be divided into closed and open predicates by whether or not SIPE-2
uses the closed-world assumption in reasoning about them. The closed-world assumption
is the assumption that if an unnegated predicate is not given in the world model, then its
negation is true. As an example, if one does not explicitly define a predicate such as (at
Karen home), then the assumption is made that (not (at Karen home)) is true, meaning
that Karen is not at home. The advantage of a closed predicate is that the user does not
have to axiomatize every possible predicate instance that is not true in the domain.
Without making the closed-world assumption (i.e., an open predicate is used), if the

12

initial state is such that no one in New York State is at home, one would explicitly have
to declare (not (at Karen home)), (not (at Bryan home)), (not (at Mary home)), etc., listing
each resident of New York State explicitly.

3.3. Definition of the Operators

Operators refer to the system's representation of actions or abstractions of actions that
may be performed in the world.

There are four types of operators: operator, state-rule, causal-rule and init-operator. An
operator has a plot that describes how to expand a goal or process node to a lower level of
detail. State rules, causal rules, and init-operators are collectively referred to as deductive
rules, and have no plot. Deductive rules are used only to add new effects by doing a
deduction. Init-operators are applied only once to deduce new statements about the initial
world model. Causal-rules and state-rules both deduce new statements about the world
and can be called recursively. The difference between causal and state rules is their order
of applicability - causal rules are applied before state rules.

Operators can have the following slots: ID, TYPE, ARGUMENTS, RESOURCES,
INSTANTIATE, PRECONDITION, CONDITION, PURPOSE, EFFECTS, TRIGGER,
TIME-CONSTRAINTS, and PLOT. The ID slot is the name, or Lisp pointer, of the
node. The TYPE slot stores the operator type, one of the four possibilities listed above.
The ARGUMENTS slot is used to declare variables and constraints. The RESOURCES
slot is a list of variables, generally a subset of the arguments slot, and implements the
notion of reusable resource. Resources can also be declared for particular actions inside
the plot, which is generally more useful. The INSTANTIATE slot is a list of variables,
generally a subset of the arguments slot, which are instantiated by the system
immediately after the operator is applied. The instantiation is done after the plot is
inserted in the plan, but before deductions are made. The PRECONDITION slot is a list
of predicates which, in regular operators, must be satisfied before the operator can be
applied. In deductive rules, it is the antecedent of a deduction. Preconditions are goals
the planner wants to be true but will not try to make true. If it is desirable to have the
planner make them true, they must be put as goals in the plot of the operator. The
CONDITION slot is a list of predicates, and is present only on deductive rules. In
deductive rules, both conditions and preconditions are the antecedents of deductions but
are matched under different circumstances. Conditions are always matched in the current
state of the world, while preconditions are matched in the previous state. The PURPOSE
slot, present only on regular operators, is a list of predicates that describes what the
operator is trying to accomplish and is used to determine which goals the operator is able
to expand. The EFFECTS slot is a list of predicates that represents the conclusions of a
deduction or operator. If the preconditions and conditions of a deductive rule or operator
hold, the effects of the rule or operator are added to the current state of the world. The
TRIGGER slot, present only on deductive rules, is a predicate that triggers the application
of that deductive rule when it is matched by a new effect. The TIME-CONSTRAINTS
slot is a list of temporal constraints on the nodes in the plot of this operator. Each
constraint consists of one of the thirteen Allen constraints [Allen 83] and the two nodes to
which this constraint applies. The PLOT slot, present only on regular operators, provides
the step-by-step instructions for performing the action represented by an operator. When
expanding a plan to the next level of detail, SIPE-2 uses the plot as a template for
generating nodes to insert in the plan. The plot consists of a network of goals or actions
with associated orderings, conditions, and effects. A loop facility is provided for
specifying parallel actions. Operators can also be expanded to a lower level with other
operators that appear in its plot as process or choiceprocess nodes. The choiceprocess
node is a way to specify a sequence of alternative operators to expand a certain operator.

13

The operators are tried in the order they are listed. Conditional plans can be specified in
SIPE-2 with cond and condpattern nodes in the plot.

An example of an operator for picking up objects is shown below. The reader is referred
to the SIPE-2 Manual [Wilkins 93] for a complete syntax for defining operators.

Operator: pick-up-object
Arguments: personl, objectl, locationl;
Purpose: (pick-up personl objectl);
Precondition: (at person] locationl),
(at objectl locationl);
Plot:
Process
Action: pick-up
Arguments: personl, objectl;
Effects: (pick-up personl objectl),
(holding person] objectl);
End Plot End Operator

There are some basic points to highlight concerning the definition and application of
operators. One point is that there are two mechanisms for applying operators. Operators
are invoked by their PURPOSE slot when the PURPOSE is matched to a goal that has
been posted in the environment. An operator can also be invoked by its name when it is
listed in the action slot of a choiceprocess node. A second point is that the EFFECT S slot
is the list of new predicates that are added to the environment once the operator has been
successfully applied. In order to use the Pick-Up-Object operator shown above, there
must either be a goal posted in the problem definition, or by another operator, which
matches the PURPOSE slot of the Pick-Up-Object operator, or second, another operator
has been invoked which lists Pick-Up-Object in its plot. In the case of a posted goal, the
goal must be something like (pick-up Karen Book) where Karen is a valid instantiation of
Personl and Book is a valid instantiation of Objectl. When the goal (pick-up Karen
Book) is matched with the PURPOSE slot (pick-up personl objectl), the Pick-Up-Object
operator is selected to expand the goal. Assuming the preconditions of the operator are
satisfied, the predicates listed in the EFFECTS slot are now written in the environment as
(pick-up Karen Book) and (holding Karen Book).

3.4 Definition of the Problem(s)

The definition of the problem tells SIPE-2 what the system is attempting to solve. The
problem definition specifies the goals that the planner must achieve, ranging from a
single goal to a whole network of goals and actions. When SIPE-2 is given the problem
to solve, the system searches through its operator definitions until it finds an operator
whose PURPOSE slot matches the goal, or one of the goals, in the problem definition.
SIPE-2 will select the first eligible operator that has been defined in the file. An example
of a simple problem that SIPE-2 would be able to solve given the Pick-Up-Object
operator described in Section 3.3 would look like the following:

Problem: pick-up-an-object
Goal: (Pick-up Karen Book)
End Problem

Goals can be given sequentially or in parallel. As noted in Section 3.3, SIPE-2 provides a
loop facility for specifying parallel actions in the plot of operators and problem

14

definitions. Since SIPE-2 is a non-linear planner, part of its power lies in the fact that it
can solve pieces of the whole problem in parallel.

An example of a problem with parallel goals that could be solved with the Pick-Up-
Object operator is shown below:

Problem: pick-up-objects-in-parallel
Parallel:
Branch 1: Goal: (Pick-up Karen Book)
Branch 2: Goal: (Pick-up Bryan Newspaper)
End Parallel
End Problem

15

4 The Missionaries And Cannibals Puzzle

In order to learn the SIPE-2 system and to experiment with SIPE-2 in a meaningful way,
we encoded the classical Artificial Intelligence (AI) Missionaries and Cannibals (MC)

puzzle.
The MC problem statement is as follows:

There are three missionaries, three cannibals and a boat on the left bank of a river. To
solve the puzzle you must transport all six persons to the right bank, using the boat. The
boat only carries two people at a time, and at least one person must bring the boat back.
The missionaries want to manage the trip across the river in such a way that the number
of missionaries on either side of the river is never less than the number of cannibals who
are on the same side.

The MC problem setup used for the exercise described in this report is as follows:

I I
Left bank I River ! Right Bank
I I
I |
| I
I I
Initial state MMMCCC |IB !
I |
I I
Goal state I B | MMMCCC
Key to Notation:
Legal Moves C > <- C B Boat
cc --> <- CC C Cannibal
MC -> <- MC M Missionary
MM --> <- MM > move to left
M -> <- M <-- move toright

Constraints: Cannibals must not outnumber missionaries on either bank.
Boat carries a maximum of two passengers.
At least one passenger must transport the boat back and forth.

16

5 Modeling the MC Puzzle in SIPE-2

This section discusses the MC puzzle as modeled in SIPE-2. Included in this discussion
is our representation of the domain information required as input to the SIPE-2 system,
e.g., the sort hierarchy, world predicates, operators, deductive rules, and problem
definition for the MC puzzle. Further discussion of the encoding of the MC puzzle in
SIPE-2 can be found in [Ludlow & Alguire 94].

The general structure of the MC puzzle as encoded in SIPE-2 closely follows the problem
description given in Section 4. To increase the efficiency of the planner, we added the
constraint that a previously visited state could not be re-visited. In other words, SIPE-2
could not use an operator that would return the system to a state already visited, thus
preventing unnecessary loops. A complete listing of the SIPE-2 input for the MC puzzle
is given as an appendix to this report.

5.1 The MC Puzzle Objects

The MC sort hierarchy is shown in Figure 3. The objects in the MC world consist of the
following classes: People, River-banks, and Boats. The class People has the instances
Cannibals and Missionaries. The class River-Banks has the instances Left-Bank and
Right-Bank. The class Boats has the instance Two-People-Boat.

People

w Missionaries
River-banks I Boats I
& instances

[classes
Cletvbank) (Right-bank) (GPoople-boa)

Figure 3. Sort Hierarchy for the MC Puzzle

5.2 The MC Puzzle Predicates

This section briefly describes the predicates defined for the MC puzzle. Figure 4 shows
the initial state and the goal state for the MC puzzle.

The STATE predicate maintains information about the current state of the MC world.
This predicate along with its negation prevents the same state from being visited more
than once. This constraint was added to increase the efficiency of the planner by
avoiding unnecessary looping. The STATE predicate has five arguments: the number of
cannibals on the river bank where the boat is located, the number of missionaries on the
river bank where the boat is located, the number of cannibals on the river bank opposite
the boat, the number of missionaries on the river bank opposite the boat, and, lastly, the
river bank where the boat is located. As an example of how the state predicate is used,
the initial state in the MC world is given by the predicate (STATE 3 3 0 0 Left-bank).

When the MOVE-MC operator3, which corresponds to move one missionary and one
cannibal, is applied for the first move from the left bank to the right bank, the state
predicate changes from (STATE 3 3 0 0 Left-bank) to (STATE 1 1 2 2 Right-bank).

Initial State Goal State

(State 3 3 0 0 Left-bank)

(Level Cannibals Left-bank 3)

(Level Cannibals Right-bank 0)

(Level Missionaries Left-bank 3) (Move-Everybody)
(Level Missionaries Right-bank 0)

(Opposite-bank Left-bank Right-bank)

(Opposite-bank Right-bank Left-bank)

(On Two-People-Boat Left-bank)

Figure 4. Initial and Goal State for the MC Puzzle

The LEVEL predicate enables us to define the number of cannibals and missionaries on
each bank. For example, the initial condition that there are 3 cannibals, 3 missionaries on
the left and O cannibals, 0 missionaries on the right is represented with the following
predicates:

(LEVEL Cannibals Left-Bank 3)
(LEVEL Cannibals Right-Bank 0)
(LEVEL Missionaries Left-Bank 3)
(LEVEL Missionaries Right-Bank 0)

The use of LEVEL predicates was necessary to force the instantiation of numerical
variables in SIPE-2 so that numerical calculations and comparisons could be performed?.

SIPE-2 has several built-in predicates related to Levels. The predicates PRODUCE and
CONSUME are used to manipulate the levels of cannibals and missionaries by
incrementing or decrementing by an amount dependent on which operator has been
applied. The current value of a variable used in a LEVEL predicate can be checked by
using the SIPE-2 predicates LEVEL<, LEVEL>, LEVEL>=, and LEVEL<=. This
allowed us to guide when a particular operator(s) was to be used. For example, an
operator to move a cannibal from right to left has preconditions to ensure that the level of
cannibals on each bank is less than or equal to the level of missionaries on each bank
before and after the operator is applied.

The OPPOSITE-BANK predicate allows us to identify banks that are opposite to one
another. For example, the predicate (OPPOSITE-BANK Left-bank Right-bank) states
that the Right-bank is opposite the Left-bank. This predicate is especially useful in the
deductive rules defined for the MC puzzle since both sides of the river bank can be
handled by a single rule.

3The operators for the MC puzzle are described in Section 5.3.

4Understanding the manipulation and instantiation of numerical variables in SIPE-2 was not a trivial task.
We encountered some difficulties with numericals in the ported Sun version of SIPE-2 which arose from
differences between Lucid Lisp numerical routines and Symbolics Lisp routines, the original SIPE-2
platform. The problems we encountered did not exist in the Symbolics version. The use of numericals in
the MC puzzle is further discussed in Section 7.1 of this report.

18

The ON predicate is used to associate the boat with a river bank. For example, the initial
condition that the boat is on the left bank is represented by (ON Two-People-Boat Left-
Bank).

5.3 The MC Puzzle Operators

An overview of the MC puzzle operators is given in Figure 5. There are two levels of
MC operators -- operators for controlling movement (SEND-TRIP-TO-RIGHT, SEND-
TRIP-TO-LEFT) and operators for performing movement (MOVE-MC, MOVE-2-C,
MOVE-2-M, MOVE-1-C, MOVE-1-M, END-MC). The following sections will briefly
describe these operators in more detail. The complete definitions of the MC operators are
given in the appendix.

Move-Everybody

Send-Trip-To-Right

Send-Trip-To-Left

End-MC
Move-1-M

Move-1-C .Move-Ever bod
Move-2-M Move-Everybody Move-MC ybody

Move-1-C Move-2-C
Move-1-M Move-2-M

\\71/ disjoint operators

N__# sequential goals

Figure 5. General Structure of the MC Puzzle Operators

Move-MC
Move-2-C

5.3.1 Operators Controlling Movement

At the top level, there are two operators that control movement for the MC puzzle:
SEND-TRIP-TO-RIGHT and SEND-TRIP-TO-LEFT. Both of these operators have as
their purpose the predicate (Move-Everybody) and represent the flow of control for
movement between the left and right river banks. The preconditions of the operators
determine which one is used to expand the goal at a particular level of the plan. As an
example, the SEND-TRIP-TO-RIGHT operator is shown below.

OPERATOR: SEND-TRIP-TO-RIGHT
ARGUMENTS: Continuous1, Numericall is previous value of Continuousl,
Continuous2, Numerical? is previous value of Continuous2,
Continuous3, Numerical3 is previous value of Continuous3,
Continuous4, Numerical4 is previous value of Continuous4;
PURPOSE: (MOVE-EVERYBODY)
PRECONDITION: (ON Two-People-Boat Left-bank)
(LEVEL Cannibals Left-bank Continuousl)
(LEVEL Cannibals Right-bank Continuous2)

19

(LEVEL Missionaries Left-bank Continuous3)
(LEVEL Missionaries Right-bank Continuous4);
PLOT:
CHOICEPROCESS:
ACTION: MOVE-MC, MOVE-2-C, MOVE-2-M, MOVE-1-C, MOVE-1-M;
ARGUMENTS: Numericall, Numerical3, Numerical2, Numerical4, Right-bank;
EFFECTS: (ON Two-People-Boat Right-bank);
GOAL: (MOVE-EVERYBODY)
END PLOT END OPERATOR

The operator SEND-TRIP-TO-RIGHT is used when the boat is on the left bank. The plot
of the SEND-TRIP-TO-RIGHT operator is a choiceprocess node that lists the operators
MOVE-MC, MOVE-2-C, MOVE-2-M, MOVE-1-C, and MOVE-1-M in its action slot.
SIPE-2 will try to apply these operators in the order they have been given. In this way,
we have communicated to SIPE-2 that our preference of operators for moving
missionaries and cannibals from the left bank to the right are the ones that move two
people first.

The four continuous variables listed in the arguments slot of the SEND-TRIP-TO-RIGHT
operator are used because we want SIPE-2 to update the continuously changing number
of missionaries and cannibals on the left and right banks in the LEVEL predicates. In
general, this is the only situation in which continuous variables are to be used. In this
particular operator, Continuousl refers to the number of cannibals on the left bank,
Continuous?2 refers to the number of cannibals on the right bank, Continuous3 refers to
the number of missionaries on the left bank, and Continuous4 refers to the number of
missionaries on the right bank. The four numerical variables are used because we need to
pass fixed numerical quantities to the operators listed in the choiceprocess node. These
numerical variables are equal to the values of the four continuous variables just before the
SEND-TRIP-TO-RIGHT operator is applied. Given the initial state of the MC puzzle as
described in Section 5.2, the values of Numericall, Numerical2, Numerical3, and
Numerical4 the first time through are 3, 0, 3, 0, respectively. Since the MOVE-MC
operator is the first one listed in the choiceprocess node, the SEND-TRIP-TO-RIGHT
operator invokes MOVE-MC with five arguments representing the number of cannibals
on the bank of origin, the number of missionaries on the bank of origin, the number of
cannibals on the bank of destination, the number of missionaries on the bank of
destination and the bank of destination. Since SEND-TRIP-TO-RIGHT initiates
movement from left to right, the bank of origin in this case is the left bank and the bank
of destination is the right bank. Thus, the first time through the MOVE-MC operator is
invoked with the values 3, 3, 0, 0, Right-bank.

The operator SEND-TRIP-TO-LEFT is used when the boat is on the right bank. The
definition of this operator is as follows:

OPERATOR: SEND-TRIP-TO-LEFT
ARGUMENTS: Continuous1, Numericall is previous value of Continuousl,
Continuous2, Numerical2 is previous value of Continuous2,
Continuous3, Numerical3 is previous value of Continuous3,
Continuous4, Numerical4 is previous value of Continuous4;
PURPOSE: (MOVE-EVERYBODY)
PRECONDITION: (ON Two-People-Boat Right-bank)
(LEVEL Cannibals Left-bank Continuous1)
(LEVEL Cannibals Right-bank Continuous2)
(LEVEL Missionaries Left-bank Continuous3)
(LEVEL Missionaries Right-bank Continuous4);
PLOT:

20

CHOICEPROCESS:
ACTION: END-MC, MOVE-1-M, MOVE-1-C, MOVE-MC, MOVE-2-C, MOVE-2-M;
ARGUMENTS: Numerical2, Numerical4, Numericall, Numerical3, Left-bank;
EFFECTS: (ON Two-Pcople-Boat Left-bank);
GOAL: (MOVE-EVERYBODY)
END PLOT END OPERATOR

The plot of the SEND-TRIP-TO-LEFT operator is a choiceprocess node whose action
slot lists the operators END-MC, MOVE-1-M, MOVE-1-C, MOVE-MC, MOVE-2-C,
MOVE-2-M. Notice that when moving from the right bank to the left, the preference is
to use the operators that move only one person before using those that move two people.
The arguments passed to the MOVE operators are the same as in SEND-TRIP-TO-
RIGHT. However, since SEND-TRIP-TO-LEFT initiates movement from right to left,
the order of the numerical variables passed to the MOVE operators is different to reflect
the fact that the bank of origin is now the right bank and the bank of destination is now
the left bank.

5.3.2 Operators Performing Movement
The operators that perform movement in the MC world imitate the legal moves of the

" Missionaries and Cannibals puzzle given in Section 4 of this report. These moves are
summarized again in the following notation:

Legal Moves C -> <- C Key to Notation:
ccC -> <- CC C Cannibal
MC -> <- MC M Missionary
MM --> <- MM --> move to left
M > <- M <-- move toright

As defined in the MC input file, the operators that move missionaries and cannibals are:

MOVE-MC Move one missionary and one cannibal
MOVE-2-C Move two cannibals

MOVE-1-C Move one cannibal

MOVE-2-M Move two missionaries

MOVE-1-M Move one missionary

END-MC Missionaries and Cannibals have all been moved

As an example, the MOVE-MC operator is listed below. The rest of the MOVE
operators are structured in a similar manner. The first four arguments are numerical
variables that represent the number of cannibals on the bank of origin, the number of
missionaries on the bank of origin, the number of cannibals on the bank of destination,
and the number of missionaries on the bank of destination. The fifth argument is the
bank of destination. The values of these first five arguments are passed by either the
SEND-TRIP-TO-RIGHT or SEND-TRIP-TO-LEFT operator as described in Section
5.3.1. Notice that the MOVE operators can handle movement in both directions. This is
accomplished by changing the order in which the numerical variables are passed to the
MOVE operators by SEND-TRIP-TO-RIGHT or SEND-TRIP-TO-LEFT.

OPERATOR: MOVE-MC
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank]1,

21

Numerical5 is (SIPE+ 1 Numerical3),
Numerical6 is (SIPE+ 1 Numerical4),
Numerical7 is (SIPE+ -1 Numericall),
Numerical8 is (SIPE+ -1 Numerical2), River-bank2;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank2)
(NOT (STATE Numerical5 Numerical6 Numerical7 Numerical8
River-bank1))
(LEVEL>= Cannibals River-bank2 1)
(LEVEL>= Missionaries River-bank2 1)
(OR (LEVEL Missionaries River-bank2 1)
(LEVEL<= Numerical7 Numerical8))
(LEVEL<= Numerical5 Numerical6);
PLOT:
PROCESS
ACTION; ROW-MC
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Cannibals River-bank1 1)
(PRODUCE Missionaries River-bank1 1)
(STATE Numerical5 Numerical6 Numerical7 Numerical8
River-bank1);
END PLOT END OPERATOR

The MOVE-MC operator accepts the arguments passed to it and then calculates four
numerical variables for reasoning about the new number of cannibals and missionaries on
each river bank after accomplishing the move represented by the operator. In the MOVE-
MC case, we are referring to the move of 1 cannibal and 1 missionary from the left to the
right bank. The last argument is the river-bank of origin. The value of this argument is
determined using the OPPOSITE-BANK predicate given the bank of destination. During
the first pass through the MC puzzle, the values of Numericall, NumericalZ, Numerical3,
and Numerical4 are instantiated as 3, 3, 0, 0, respectively, and the values of Numerical$,
Numerical6, Numerical7, and Numerical8 are computed as 1, 1, 2, 2, respectively.

SIPE+ is a built-in addition function provided by the system. Using the instantiated
values of the variables, the preconditions of the MOVE-MC operator are checked for
validity to see if the operator can be used or not. If the preconditions are satisfied, the
effects of the MOVE-MC operator are evaluated.

When the PRODUCE predicates listed in the effects slot of the operator are posted to the
environment, the levels of Cannibals and Missionaries on the right bank, as maintained
by SIPE-2, are incremented by 1. As an example, the level of Cannibals on the right
bank before using the PRODUCE predicate was 0 as given by the initial state predicate
(LEVEL Cannibals Right-bank 0). After using the PRODUCE predicate, the level of
Cannibals on the right bank becomes 1 which in SIPE-2 notation reads (LEVEL
Cannibals Right-bank 1). Likewise for the level of Missionaries on the right bank. The
PRODUCE events also trigger the two deductive rules described in Section 5.4 that use
the CONSUME predicate to decrement the levels of Cannibals and Missionaries on the
left bank by the same number. As an example, the initial predicate (LEVEL Cannibals
Left-bank 3) becomes (LEVEL Cannibals Left-bank 2).

The four continuous variables used in the operators SEND-TRIP-TO-RIGHT and SEND-
TRIP-TO-LEFT to represent the number of missionaries and cannibals as changing
quantities are updated by the LEVEL predicate statements listed in the precondition slots
of these operators. These updates reflect the changes of levels made by PRODUCE and
CONSUME predicates in the MOVE operators. The updates to the continuous variables
occur the next time the operators are applied.

22

When the number of missionaries and cannibals on the left bank is zero, SIPE-2 can
apply the operator END-MC which signals that the problem is solved.

5.4 Domain Theory in the MC Puzzle

As previously mentioned, a powerful feature of SIPE-2 is the ability to encode a causal
theory to represent and reason about the effects of actions in different world states. SIPE-
2 uses deductive rules to allow effects of an event to be deduced without being mentioned
explicitly in operators. Thus, the deduction of context-dependent effects is permitted.
Deductive rules and their slots were briefly described in Section 3.3 of this report.
Several causal rules that have been defined in the MC puzzle are shown below.

Causal-Rule: On-Bank-Not-On-Other-Bank

Arguments: Boatl, River-bank1, River-bank2;

Trigger: (ON Boatl River-bank1);

Precondition: (ON Boatl River-bank2) (OPPOSITE-BANK River-bank1 River-bank2);
Effects: (NOT (ON Boatl River-bank2));

End Causal-Rule

Causal-Rule: Produce-and-Consume-Cannibals

Arguments: Cannibals, River-bank1, Numericall, River-bank?2;
Trigger: (PRODUCE Cannibals River-bank1 Numericall);
Precondition: (OPPOSITE-BANK River-bank1 River-bank2)
Effects: (CONSUME Cannibals River-bank2 Numericall);
End Causal-Rule

Causal-Rule: Produce-And-Consume-Missionaries

Arguments: Missionaries, River-bank1, Numericall, River-bank2;
Trigger: (PRODUCE Missionaries River-bank1l Numericall);
Precondition: (OPPOSITE-BANK River-bank1 River-bank2)
Effects: (CONSUME Missionaries River-bank2 Numericall);
End Causal-Rule

The On-Bank-Not-On-Other-Bank rule has the effect that when the Two-People-Boat
moves from one bank to the other bank, the boat is no longer on the original bank. This
rule is triggered when an effect (ON Boatl River-bank1) is posted by an operator during
the planning process. The variables Boatl and River-bank1 are instantiated by the trigger
predicate. The OPPOSITE-BANK predicate determines the value of River-bank2 based
on the value of River-bankl1.

The Produce-And-Consume-Cannibals and the Produce-And-Consume-Missionaries
rules help maintain how many cannibals and missionaries are on each bank by decreasing
the number on one bank after there has been a move to the other bank. The Produce-
And-Consume-Cannibals rule is triggered when an effect (PRODUCE Cannibals River-
bank1 Numericall) is posted. Likewise, the Produce-And-Consume-Missionaries rule is
triggered when an effect (PRODUCE Missionaries River-bank1 Numericall) is posted.
River-bank1 is instantiated by the trigger predicate. The OPPOSITE-BANK predicate
determines the value of River-bank2 based on the value of River-bank1. The use of the
OPPOSITE-BANK predicate in these rules and the On-Bank-Not-On-Other-Bank rule
above allows a single rule to handle both river banks. The number of cannibals and
missionaries to subtract, either one or two, is represented by the variable Numericall and
is also instantiated by the trigger predicate.

23

5.5 Problem Definition for the MC Puzzle

The last piece of information needed by SIPE-2 is the definition of the problem. The
problem definition for this implementation of the MC puzzle is simply the goal (Move-
Everybody) as shown below:

Problem: MC-Problem
Goal: (Move-Everybody)
End Problem

With the MC input as described in the previous sections, the SIPE-2 system has all the
information needed to generate a plan. SIPE-2 can generate plans automatically or
interactively via menus. The generation of a plan for solving the MC puzzle will be the
topic of discussion in Section 6.

24

6 Generating SIPE-2 Plans for the MC Puzzle

This section briefly describes how SIPE-2 uses the MC puzzle input to generate plans for
solving the MC problem. Details of using the SIPE-2 interface, as well as, explanations
of system behavior can be found in [Wilkins 93]. When testing and running the SIPE-2
input file, it is helpful to run SIPE-2 interactively with various options in the Trace
Profile Menu selected. The Trace Profile provides as detailed a trace of variable
instantiations, goal phantomizations, and goal expansions as the user specifies, from high
level notices to "gory details". The algorithm that SIPE-2 uses to produce new planning
levels is described in Section 2.3 of this report.

When the goal (Move-Everybody) is posted as given in the MC-problem definition,
SIPE-2 collects all the operators that can solve this goal, i.e., operators that have (Move-
Everybody) as their purpose. The system finds the operators SEND-TRIP-TO-RIGHT
and SEND-TRIP-TO-LEFT as described in Section 5.3.1. SIPE-2 begins with the first
operator listed in the file, which in this case is SEND-TRIP-TO-RIGHT. If the
preconditions are satisfied, the operator is used to expand the goal. If the preconditions
are not satisfied, SIPE-2 goes to the next applicable operator in the file.

Given the initial state of the world as listed in Figure 4, the preconditions of SEND-
TRIP-TO-RIGHT are satisfied. Thus, the SEND-TRIP-TO-RIGHT operator is selected
and one level of planning is successfully completed.

As explained in Section 5.3.1, the first item in the plot of the SEND-TRIP-TO-RIGHT
operator is a choiceprocess node listing the operators MOVE-MC, MOVE-2-C, MOVE-
2-M, MOVE-1-C, and MOVE-1-M. SIPE-2 expands the choiceprocess node by invoking
these operators, with the specified arguments, in the order they have been listed until
finding one whose preconditions are all satisfied. Since the MOVE-MC operator is listed
first, SIPE-2 checks the preconditions to see if this operator can be used. Since the
preconditions of this operator are satisfied, SIPE-2 selects the MOVE-MC operator.
SIPE-2 successfully applies MOVE-MC and the instantiated effects of the operator are
now added to the environment. For sake of clarity, these effects are listed as follows:

(ON Two-People-Boat Right-bank)
(PRODUCE Cannibals Right-bank 1)
(PRODUCE Missionaries Right-bank 1)
(STATE 1 1 2 2 Right-bank)

Section 5.4 described three deductive rules that were defined for the MC puzzle. When
each operator effect is added to the environment, SIPE-2 checks for any deductive rules
that can be triggered. When the first effect is added to the environment, the deductive
rule On-Bank-Not-On-Other-Bank is triggered which negates the predicate (ON Two-
People-Boat Left-bank) since a boat can only be on one bank at a time. When the second
effect is added, the deductive rule Produce-And-Consume-Cannibals is triggered. The
third effect triggers the Produce-And-Consume-Missionaries rule. Consequently, one
cannibal and one missionary are automatically subtracted from the left river bank.
Without the deductive rules, each of these "automatic" effects would have to be explicitly
listed in every operator that causes them.

SIPE-2 control returns to the SEND-TRIP-TO-RIGHT operator, which posts the goal
(Move-Everybody) a second time. The process of achieving the (Move-Everybody) goal
begins again, only now the state of the world has been updated to reflect the fact that a
missionary, a cannibal, and the boat have moved from the left bank to the right bank.

25

SIPE-2 tries to apply the SEND-TRIP-TO-RIGHT operator again. However, this time
the preconditions fail because the boat is no longer on the left river-bank. SIPE-2
continues with the next operator which is SEND-TRIP-TO-LEFT. The preconditions of
SEND-TRIP-TO-LEFT are satisfied, thus, SIPE-2 finds a valid plan at level 2.

The operators listed in the choiceprocess node of SEND-TRIP-TO-LEFT are END-MC,
MOVE-1-M, MOVE-1-C, MOVE-MC, MOVE-2-C, MOVE-2-M. The preconditions for
the END-MC operator are not satisfied, so SIPE-2 tries the MOVE-1-M operator next.
The preconditions for MOVE-1-M are satisfied so SIPE-2 selects this operator. After
MOVE-1-M is successfully applied, the effects of the operator, along with deduced
effects, are added to the environment. SIPE-2 control returns to the SEND-TRIP-TO-
LEFT operator which posts the goal (Move-Everybody) and the process repeats. SIPE-2
continues until all the missionaries and cannibals have moved to the right bank. When
the level of missionaries and cannibals on the left is zero, the preconditions of the END-
MC operator are satisfied and the MC problem is solved.

SIPE-2 solves this implementation of the MC problem in 13 planning levels. When the
option "Backtrack To Find Alternatives" is selected from the Plan Automatic menu,
SIPE-2 generates four plan solutions as listed below.

;33 Solution 1

ROW-MC 3300 RIGHT-BANK
ROW-1-M 1122 LEFT-BANK
ROW-2-C 2310 RIGHT-BANK
ROW-1-C 3003 LEFT-BANK
ROW-2-M 1320 RIGHT-BANK
ROW-MC 2211 LEFT-BANK
ROW-2-M 221 1RIGHT-BANK
ROW-1-C 1320 LEFT-BANK
ROW-2-C 3003 RIGHT-BANK
ROW-1-M 2310 LEFT-BANK
ROW-MC 1122 RIGHT-BANK
EVERYBODY-MADE-IT

;;; Solution 2

ROW-MC 3300 RIGHT-BANK
ROW-1-M 1122 LEFT-BANK
ROW-2-C 2310 RIGHT-BANK
ROW-1-C 3003 LEFT-BANK
ROW-2-M 1320 RIGHT-BANK
ROW-MC 2211 LEFT-BANK
ROW-2-M 2211 RIGHT-BANK
ROW-1-C 1320 LEFT-BANK
ROW-2-C 3003 RIGHT-BANK
ROW-1-C 2310 LEFT-BANK
ROW-2-C 2013 RIGHT-BANK
EVERYBODY-MADE-IT

;35 Solution 3

ROW-2-C 3300 RIGHT-BANK
ROW-1-C 2013 LEFT-BANK
ROW-2-C 2310 RIGHT-BANK
ROW-1-C 3003 LEFT-BANK
ROW-2-M 1320 RIGHT-BANK
ROW-MC 2211 LEFT-BANK
ROW-2-M 2211 RIGHT-BANK
ROW-1-C 1320 LEFT-BANK
ROW-2-C 3003 RIGHT-BANK
ROW-1-M 2310 LEFT-BANK
ROW-MC 1122 RIGHT-BANK
EVERYBODY-MADE-IT

;33 Solution 4

ROW-2-C 3300 RIGHT-BANK
ROW-1-C 2013 LEFT-BANK
ROW-2-C 2310 RIGHT-BANK
ROW-1-C 3003 LEFT-BANK
ROW-2-M 1320 RIGHT-BANK
ROW-MC 2211 LEFT-BANK
ROW-2-M 2211 RIGHT-BANK
ROW-1-C 1320 LEFT-BANK
ROW-2-C 3003 RIGHT-BANK
ROW-1-C 2310 LEFT-BANK
ROW-2-C 2013 RIGHT-BANK
EVERYBODY-MADE-IT

The fields of the plan solutions represent the following:

1) the action specified in the ACTION slot of the operator selected by SIPE-2
2) the number of cannibals on the bank of origin before the move
3) the number of missionaries on the bank of origin before the move

- o

-y

4) the number of cannibals on the bank of destination before the move
5) the number of missionaries on the bank of destination before the move
6) the bank of destination

Looking at the first line of Solution 1, we see that the ACTION was ROW-MC which
corresponds to the selection of the MOVE-MC operator, the number of cannibals on the
left bank was 3, the number of missionaries on the left bank was 3, the number of
cannibals on the right bank was 0, the number of missionaries on the right bank was 0,
and the bank of destination was the right bank. The second line of Solution 1 shows that
the MOVE-1-M operator was chosen next, the number of cannibals on the right was 1,
the number of missionaries on the right was 1, the number of cannibals on the left was 2,
the number of missionaries on the left was 2, and the bank of destination was the left
bank. The third operator selected was MOVE-2-C with a destination of the right bank,
and so on.

27

7 Lessons Learned

The implementation of the MC puzzle as described in this report is the product of several
iterations. We encountered some problems implementing the MC puzzle in SIPE-2
related to the use of numerical variables, the encoding of operators with multiple effects,
and goal phantomization through the instantiation of variables. These issues will be
discussed in light of our experience in an effort to supplement the SIPE-2 documentation
currently available on the topics.

7.1 The Use of Numerical Variables

Numerical variables are distinguished into two classes, Numerical and Continuous. The
numerical class is used for variables that will eventually be instantiated to one particular
number. Variables in the continuous class will have values that vary with time as actions
are performed and must be computed by the system. A general rule is to always use the
class Numerical except when you want to force SIPE-2 to compute the value of a
continuously changing quantity. SIPE-2 provides the special predicates PRODUCE,
CONSUME, LEVEL, LEVEL<, LEVEL>, LEVEL<=, and LEVEL>= for numerical
reasoning.

There are five numerical constraints that may be posted on variables of the Class
Numerical (i.e., not on continuous variables nor any nonnumerical variables). These
constraints are current-value, previous-value, range, function, and summary-range. Other
nonnumerical constraints may also be posted on numerical variables. The Current-value
constrains a numerical variable to be the current value of a continuous variable at a
particular point in the plan and is taken just after the current node. Similarly, the
previous-value constrains a numerical variable to be the previous value of a continuous
variable at a particular point in the plan and is taken just before the current node. The
Range constrains a variable to lie within a given range. Function constrains a variable to
be the value of a certain function applied to any number of arguments. If some of these
arguments are not instantiated, SIPE-2 computes a range from the function constraint by
calling the function on all the possible instantiations. When the function constraints are
used, SIPE-2 expects the name of a Lisp function or the name of an attribute in the sort
hierarchy. The arguments to the Lisp function can be any SIPE-2 argument, and it should
return either T or a SIPE-2 numerical object. Computing the constraints described above
can be expensive. Thus, it is sometimes necessary to make tradeoffs between storage and
recomputation. The SIPE-2 system handles this problem by posting the summary-range
constraint on numerical variables which stores the results of computing a noncontinuous
variable's constraints. The summary-range constraint can be posted only by the system,
not by users.

Compared to other Al planners, SIPE-2 has a fairly extensive numerical reasoning
capability. SIPE-2 has mechanisms for reasoning about numerical quantities, both
continuous and discrete. The user invokes these mechanisms by declaring variables to be
in the numerical class, and using constraints and certain system-defined predicates on
them as described above. Numericals have been used in domains such as beer production
planning and military crisis action planning to represent start times, end times, durations,
production levels, mobilities, runway lengths, etc.

Nevertheless, understanding and using numericals in SIPE-2 is not a trivial task. We
spent some time trying to understand the use, manipulation, and instantiation of
numerical variables and especially how to properly and efficiently implement even the
simple numerical constraints in our representation of the MC puzzle. The differentiation
and usage of numerical vs. continuous variables was not clear based on available

28

documentation and examples. Further experimentation and discussion with the system
developer was required for clarification on this topic. In addition, an issue that requires
further investigation is how numerical reasoning capabilities in SIPE-2 scale up to handle
numerical constraints inherent in applications of real world magnitude, e.g., the
transportation of military forces, where the number of people to transport is on the order
of thousands rather than single digits as in the MC puzzle.

7.2 The Encoding of Operators with Multiple Effects

As an initial attempt to formalize the MC puzzle in SIPE-2, we defined the class
hierarchy for missionaries and cannibals differently than the current representation
described in this report. The Class Persons had as subclasses the classes Cannibals and
Missionaries. The Class Cannibals had three instances "C1", "C2", and "C3" to represent
the three cannibals in the puzzle. Similarly, the Class Missionaries had three instances
"M1", "M2", and "M3" to represent the three missionaries in the puzzle. The initial state
of the puzzle was represented by a set of seven predicates of the form (ON x Left-bank),
where x corresponded to the cannibals, missionaries, and the boat. As an example, the
predicate (ON C1 Left-bank) declares that the first cannibal is on the left bank. The goal
state was represented by a set of six predicates of the form (ON x Right-bank), where x
corresponded to the cannibals and the missionaries. In this formalization, there were ten
main operators corresponding to legal moves. For example, the operator Move-2C-L-R
corresponded to the legal move of two cannibals riding in the boat from the left bank to
the right bank of the river. The other operators were Move-MC-L-R, Move-MC-R-L,
Move-1M-L-R, Move-1M-R-L, Move-2M-L-R, Move-2M-R-L, Move-1C-L-R, Move-
1C-R-L, and Move-2C-R-L.

The initial problem definition was structured as follows:

Problem: MC-Problem
Parallel:
Branch 1: Goal: (On C1 Right-bank)
Branch 2: Goal: (On C2 Right-bank)
Branch 3: Goal: (On C3 Right-bank)
Branch 4: Goal: (On M1 Right-bank)
Branch 5: Goal: (On M2 Right-bank)
Branch 6: Goal: (On M3 Right-bank)
End Parallel
End Problem

The difficulty we encountered involved the encoding of the operators that moved two
people, as in the operator Move-2C-L-R shown below. The purpose of the operator was
to move two different cannibals from the left to the right bank, canniball and cannibal2
which is not canniball.

OPERATOR: MOVE-2C-L-R
ARGUMENTS: Canniball, Right-bank, Cannibal2 is not Canniball, Numericall,
Numerical2, Numerical3, Numerical4, Numerical5, Numerical6,
Two-people-boat, Left-bank, Missionaries-On-Right-Bank;
PRECONDITION: (ON Canniball Left-bank),
(ON Cannibal2 Left-bank),
(OR (LEVEL Missionaries-On-Right-Bank 0)
(LEVEL>= Missionaries-On-Right-Bank Numerical6)),
(NOT (STATE Numerical5 Numerical6 Numerical3 Numericald));
PLOT:
PROCESS

29

ACTION: MOVE-2C-L-R-PRIM
ARGUMENTS: Canniball, Right-bank, Cannibal2, Left-bank, Two-people-boat,
NumericalS, Numerical6, Numerical3, Numerical4,
Cannibals-on-Left-Bank, Cannibals-on-Right-Bank;
EFFECTS: (ON Canniball Right-bank),
(NOT (ON Canniball Right-bank)),
(ON Cannibal2 Right-bank),
(NOT (ON Cannibal2 Right-bank)),
(ON Two-people-boat Right-bank),
(NOT (ON Two-people-boat Right-bank)),
(STATE Numerical5, Numerical6, Numerical3, Numerical4),
(CONSUME Cannibals-on-Left-Bank 2),
(PRODUCE Cannibals-on-Right-Bank 2);
END PLOT END OPERATOR

In order to check the correctness of our operator, we isolated the task of moving two
cannibals. The simplified problem definition consisted of two sequential goals as
follows:

Problem: MC-Problem
Goal: (On C1 Right-bank)
Goal: (On C2 Right-bank)
End Problem

When SIPE-2 applied the MOVE-2C-L-R operator to expand the first problem goal, (ON
C1 Right-bank), the relevant operator effects that were posted were (ON C1 Right-bank),
where Canniball was instantiated to the instance C1, and the secondary effect (ON
Cannibal2 Right-bank) where Cannibal2 was an uninstantiated variable constrained to be
a cannibal which was not C1. One would have expected the posted secondary effect (ON
Cannibal2 Right-bank) to satisfy the second goal of our simplified MC problem (ON C2
Right-bank). However, SIPE-2 would not match the uninstantiated secondary effect
posted by the MOVE-2C-L-R operator to the goal (ON C2 Right-bank). Thus, SIPE-2
would fail to solve the problem. This seemed to be related to the fact that the secondary
effect variable was not directly involved in the goal that was originally posted. A
possible explanation has to do with the way SIPE-2 recognizes goals that are already
achieved (i.e., the goal predicate is true) at the point in the plan where they occur. This is
referred to as goal phantomization.

The problems we were experiencing led us to adapt an alternative representation of the
problem, the one described in this report, which was also more efficient than the initial
formulation. We have since experimented more with variable instantiation and, related to
this, the phantomization of goals through variable instantiation which will be discussed
next.

7.3 The Phantomization of Goals Through Variable Instantiation

As mentioned earlier in this report, SIPE-2 uses variables and the ability to post
constraints on variables in the planning process. While this is a desirable feature of
generative planners, it also introduces some complexity because the planner must
determine when a predicate containing a variable is true. The use of variables also
introduces complexity in what is referred to as goal phantomization, i.e., the process of
achieving a goal by having it already true at the point in the plan where it occurs. This
section will discuss this issue in relation to some of the problems we experienced
regarding our initial formalization of the MC puzzle in SIPE-2.

30

In general, SIPE-2 adheres to its least-commitment philosophy by refusing to instantiate
variables or to add ordering constraints unless forced to do so. Regarding the use of
instantiation to accomplish goals, the system provides several options. These options are
as follows: to instantiate whenever possible, to never post constraints, or to instantiate
only when there is one possible binding to solve the goal. The first choice does not
actually instantiate variables unless there is only one possible instantiation to accomplish
the goal. This is the choice most often used in the domains implemented in SIPE-2. The
second choice avoids commitment by never posting constraints of any kind. The third
choice allows constraints which instantiate a variable to a given object (the Instan
constraint) or to the same object to which another variable has been instantiated (the
Same constraint). However, it does not allow the Pred constraint which must instantiate a
variable so that a given predicate containing that variable is true.

Options for using helpful interactions between parallel branches are more restricted since
adding ordering constraints is not irrevocable and instantiations may have to be made. If
two branches of a plan are in parallel, an interaction is defined to occur when an expected
effect (i.e., any formula the planner expects to be true within a subplan) in one branch
possibly codesignates’ with an expected effect in another branch. Helpful interactions
are effects that agree in sign -- meaning they are both negated, both unnegated, or both
unknown. The three options for using helpful interactions provided by SIPE-2 are as
follows: to never add ordering constraints for the purpose of phantomization, to add
ordering constraints when no other constraints are required to accomplish the
phantomization, or to add ordering constraints when there is a parallel branch with an
effect that has only one possible instantiation for accomplishing the phantomization. The
second option means that the helpful effect in a parallel branch is necessarily
codesignated with the goal being phantomized and that the goal to be phantomized is
guaranteed to be true at the end of the parallel branch. The third choice also requires that
the goal to be phantomized is guaranteed to be true at the end of the parallel branch, but
allows the effect to be possibly codesignated as long as there is only one possible
instantiation that will make it codesignate.

If the effects between parallel branches do not agree in sign, they may be harmful
interactions. SIPE-2 has several techniques for dealing with this problem. The most
important one is SIPE-2's ability to use resource reasoning to handle many problems that
other classical planners would have to resolve through harmful parallel interactions.
Another important technique for dealing with nonlinear actions is distinguishing between
main effects and side effects of an action. SIPE-2 recognizes and resolves only those
interactions that deal with the main effects of nodes. Since SIPE-2 provides flexibility in
specifying main and side effects, problematic predicates can be changed to main effects.
This greatly reduces the computational burden because the system is not required to
resolve conflicts that do not matter. By default, all effects that are deduced are
considered to be side effects. Effects that are provided by the goals of the problem or are
introduced directly by operator applications are main effects. SIPE-2 also simplifies the
problem by not shuffling actions between two parallel branches. It only orders the
actions by putting one branch before or after the others. While this prevents some
solutions from being found (as in the MC operator example described above), it is a
technique for retaining efficiency while not being overly restrictive.

S5The term possibly codesignates means that two variables/objects unify, i.e., it is consistent to assume they

. have the same instantiation. Alternatively, the term necessarily codesignates means that two
variables/objects are the same objects, are instantiated to the same objects or are constrained to be
instantiated to the same objects. The term codesignates used without a modifier means that the objects in
question necessarily codesignate. Possible codesignation is referred to explicitly.

31

When it was determined that the problems encountered encoding operators with multiple
effects was related to goal phantomization in SIPE-2, some tests were performed
regarding the way SIPE-2 handles this issue. [Ludlow 94] describes a simplified problem
analogous to the situation detected when we were trying to implement the operators
moving two people and presents a summary of a goal phantomization analysis performed
in SIPE-2. The situation tested involved a single operator with two main effects -- the
first main effect matching the purpose of the operator while the second main effect did
not match the purpose of the operator. Additionally, the second main effect was either a
predicate of arity zero (i.e., a constant), or a predicate of arity one (i.e., a predicate
involving one variable). If the second main effect involved a variable, that variable was
not involved in the purpose of the operator. All of the problems consisted of two goals --
the first goal matching the purpose of the operator and the second goal matching the
secondary effect of the main operator. Since the variables involved in the secondary
effect of the operator were different than the variables involved in the purpose of the
operator, there was no guarantee that SIPE-2 would instantiate them so as to phantomize
the second goal. Thirteen variations of the above situation, as well as, two types of
problems were considered -- one with sequential goals and one with parallel goals. The
purpose of the experiment conducted by Ludlow was to determine under what conditions
the second goal would be (or not be) phantomized as a result of the application of the
operator to achieve the first goal. To briefly summarize, 4 problems could be solved only
sequentially, 4 problems could be solved both sequentially and in parallel, and 5
problems could not be solved either sequentially or in parallel. Thus, SIPE-2 fails to
solve 9 out of 13 of the parallel problems, and 5 out of 13 of the sequential problems.
The results of this investigation are more fully documented in the reference previously
given.

32

8 Conclusion

This report describes work related to some experiments performed at Rome Laboratory
with generative planners. The main objective of the project was to provide an
understanding of generative planners and familiarization with two different generative
planners, O-Plan2 and SIPE-2. A secondary objective of the project, mainly a subproduct
of the experimentation with both planners, was the comparison between O-Plan2 and
SIPE-2. In particular, this report highlights our experimentation with the SIPE-2
planning system in terms of encoding the Missionaries and Cannibals puzzle, a simple
classical problem in Artificial Intelligence. This report also provides guidance for
defining and solving new problems with SIPE-2 in an effort to capture our experience
with the encoding process.

The Missionaries and Cannibals puzzle was selected for our experimentation with
generative planners because it is a simple Al classical planning problem and it deals with
numerical calculations, an aspect we felt was relevant to application interests. The
encoding of the Missionaries and Cannibals puzzle in SIPE-2 was instrumental in
understanding the implementation of fundamental generative planning capabilities, as
well as, the overall planning process embodied in the SIPE-2 system. In addition, the
MC puzzle provided us with a frame of reference with which to interact with system
developers to pinpoint strengths and limitations of the system. While SIPE-2 is a fairly
mature system, we discovered that it is also still a research product with room for
improvement and further testing. As a result of our effort encoding the MC puzzle,
several errors were detected and corrected with patches that were added to the system.
Several discussions regarding the state of current Al planners were spawned in an attempt
to speculate whether generative planning technology was ready to handle the complexity
and scale of real world problems.

We encountered some problems encoding the MC puzzle related to the use of numerical
variables, the encoding of operators with multiple effects, and goal phantomization
through the instantiation of variables. These issues are discussed in light of the MC
encoding exercise. Among Al planners, SIPE-2 is one of the pioneers in manipulating
numerical quantities. SIPE-2 has mechanisms for reasoning about numerical quantities,
both continuous and discrete. The user invokes these mechanisms by declaring variables
to be in the numerical class, and using constraints and certain system-defined predicates
on them. However, it took some time understanding the use and manipulation of
numerical variables to properly implement even the simple numerical constraints in our
representation of the MC puzzle.

Another area of investigation was the way SIPE-2 handles the phantomization of goals
through variable instantiation. Before fully understanding the heuristics embodied in
SIPE-2, we experienced some difficulties encoding operators with multiple effects. This
led us to look more closely at variable instantiation and the goal phantomization process.
Several example files were created to exercise our understanding of these concepts. A
summary of the results regarding this experimentation can be found in [Ludlow 94].
Ludlow presents some situations in which SIPE-2 fails to phantomize goals due to its
heuristics. A topic of further investigation would be to determine how well the heuristics
employed in SIPE-2 perform in general.

The final MC puzzle input solution documented in this report is the result of several
iterations and refinements. The task of learning to encode operators in SIPE-2 is fairly
straightforward as long as one takes the time to carefully read and study available
documentation and existing examples. However, encoding operators in SIPE-2 to

33

produce an efficient plan solution requires a fair amount of expertise with the SIPE-2
language formalism.

As a result of this exercise, we examined several fundamental aspects of generative
planning. These aspects include the encoding and expansion of operator schemata, the
instantiation and manipulation of numerical variables, the use and encoding of operators
with multiple effects, the implementation of a causal theory through deductive reasoning,
goal phantomization, and search. Overall, this project has been a valuable learning
experience concerning the details of the SIPE-2 planning system and, more generally, in
the area of generative planning as a whole.

34

9 Acknowledgments

The author would like to thank Carla Ludlow whose experience and determination made
this project very rewarding, David Wilkins for his helpful comments and suggestions for
using SIPE-2, and Nort Fowler for his support and interest in this project.

35

References

[Allen 83]

[Arthur et al. 93]

[Currie & Tate 91]

[Ludlow 94]

[Ludlow & Alguire 94]

[O-Plan2 93]

[Wilkins 88]

[Wilkins 93]

[Wilkins et al. 94]

J. F. Allen, "Maintaining Knowledge About Temporal
Intervals," Communications of the Association for Computing
Machinery, Vol. 26 No. 11, 1983.

Arthur, R., Deitsch, A., and Stillman, J., "Tachyon: A
Constraint-based Temporal Reasoning Model and its
Implementation," SIGART Bulletin, 4:3, July 1993.

Currie, K.W., and Tate, Austin, "O-Plan: The Open Planning
Architecture", Artificial Intelligence, 51(1), Autumn 1991.

Ludlow, Carla O., "O-Plan2 vs. SIPE-2 - A General
Comparison," RL-TR-94-96, Rome Laboratory, Griffiss AFB,
New York, 1994,

Ludlow, Carla O., and Alguire, Karen M., "Looking at O-Plan2
and SIPE-2 Through the Missionaries and Cannibals,"
Proceedings of the 1994 ARPA/RL Knowledge-Based Planning
and Scheduling Initiative Workshop, 1994.

O-Plan2: The Open Planning Architecture, User Guide Version
2.1, AIAI, University of Edinburgh, 1993.

Wilkins, David E., Practical Planning: Extending the Classical
Al Planning Paradigm,, Morgan Kaufmann Publishers, Inc., San
Mateo, CA., 1988. :

Wilkins, David E., Using the SIPE-2 Planning System: A
Manual for SIPE-2, Version 4.3, SRI International, 1993.

Wilkins, David, Myers, Karen, Wesley, Leonard, and Lowrance,

John, Planning in Dynamic and Uncertain Environments, RL-
TR-94-39, Rome Laboratory, Griffiss AFB, New York, 1994.

36

.

Appendix
Implementation of the Missionaries and Cannibals Puzzle in SIPE-26

:AUTHOR: Carla O. Ludlow and Karen M. Alguire and David E. Wilkins
:DESCRIPTION: the missionaries and cannibals problem

5 ========== Sort Hierarchy

(DEFINE.DOMAIN)

CLASS: River-Banks
INSTANCES: Left-bank, Right-bank
END CLASS

CLASS: People
INSTANCES: Cannibals, Missionaries
END CLASS

CLASS: Boats
INSTANCES: Two-People-Boat
END CLASS

STOP

. I Initial World Predicates ====

(DEFINE.DOMAIN)
static-predicates: (OPPOSITE-BANK)
PREDICATES:

(OPPOSITE-BANK Left-bank Right-bank)
(OPPOSITE-BANK Right-bank Left-bank)

(ON Two-People-Boat Left-bank)
(STATE 3 3 00 Left-bank)
(LEVEL Cannibals Left-bank 3)
(LEVEL Cannibals Right-bank 0)
(LEVEL Missionaries Left-bank 3)
(LEVEL Missionaries Right-bank 0)
END PREDICATES

STOP

mmmrmmmm—mm——o=====m———o OPERATORS= ———ommmm=—==—======

(DEFINE.DOMAIN)

OPERATOR: SEND-TRIP-TO-RIGHT

6The implementation of the MC puzzle as listed in this appendix is a revised version of an original solution
encoded by Carla Ludlow and Karen Alguire. David Wilkins, the developer of SIPE-2, made several
suggestions to achieve a more efficient solution, the version that is listed here.

37

ARGUMENTS: Continuous1, Numericall is previous value of Continuousl,
Continuous2, Numerical2 is previous value of Continuous2,
Continuous3, Numerical3 is previous value of Continuous3,
Continuous4, Numerical4 is previous value of Continuous4;
PURPOSE: (MOVE-EVERYBODY)
PRECONDITION: (ON Two-People-Boat Left-bank)
(LEVEL Cannibals Left-bank Continuousl1)
(LEVEL Cannibals Right-bank Continuous2)
(LEVEL Missionaries Left-bank Continuous3)
(LEVEL Missionaries Right-bank Continuous4);
PLOT:
CHOICEPROCESS:
ACTION: MOVE-MC, MOVE-2-C, MOVE-2-M, MOVE-1-C, MOVE-1-M;
ARGUMENTS: Numericall, Numerical3, Numerical2, Numerical4, Right-bank;
EFFECTS: (ON Two-People-Boat Right-bank);
GOAL: (MOVE-EVERYBODY)
END PLOT END OPERATOR

OPERATOR: SEND-TRIP-TO-LEFT
ARGUMENTS: Continuous1, Numericall is previous value of Continuousl,
Continuous2, Numerical2 is previous value of Continuous2,
Continuous3, Numerical3 is previous value of Continuous3,
Continuous4, Numerical4 is previous value of Continuous4;
PURPOSE: (MOVE-EVERYBODY);
PRECONDITION: (ON Two-People-Boat Right-bank)
(LEVEL Cannibals Left-bank Continuousl)
(LEVEL Cannibals Right-bank Continuous2)
(LEVEL Missionaries Left-bank Continuous3)
(LEVEL Missionaries Right-bank Continuous4);
PLOT:
CHOICEPROCESS:
ACTION: END-MC, MOVE-1-M, MOVE-1-C, MOVE-MC, MOVE-2-C, MOVE-2-M;
ARGUMENTS: Numerical2, Numerical4, Numericall, Numerical3, Left-bank;
EFFECTS: (ON Two-People-Boat Left-bank);
GOAL: (MOVE-EVERYBODY)
END PLOT END OPERATOR

OPERATOR: END-MC
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, Rivér-bankl;
PRECONDITION: (LEVEL Missionaries Left-bank 0)
(ILEVEL Cannibals Left-bank 0);
PLOT:
PROCESS ACTION: EVERYBODY-MADE-IT
EFFECTS: (MOVE-EVERYBODY);
END PLOT END OPERATOR

;3» The Send-Trip-to-Right and Send-Trip-to-Left operators instigate trips by (1) listing
;; preferred ordering of operators (prefer 2 people when moving to goal, 1 person on
;3 return trips), and (2) computing numerical values of state for use in move oprs.

j===——==oos—smo—omes Move Operators

OPERATOR: MOVE-MC
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1,

38

Numerical5 is (SIPE+ 1 Numerical3),
Numerical6 is (SIPE+ 1 Numerical4),
Numerical7 is (SIPE+ -1 Numericall),
Numerical8 is (SIPE+ -1 Numerical2), River-bank?2;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank2)
(NOT (STATE Numerical5 Numericalé Numerical7 Numerical8
River-bank1))
(LEVEL>= Cannibals River-bank2 1)
(LEVEL>= Missionaries River-bank2 1)
(OR (LEVEL Missionaries River-bank2 1)
(LEVEL<= Numerical7 Numerical8))
(LEVEL<= Numerical5 Numerical6);
PLOT:
PROCESS
ACTION: ROW-MC
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Cannibals River-bank1 1)
(PRODUCE Missionaries River-bank1 1)
(STATE Numerical5 Numerical6 Numerical7 Numerical§
River-bank1);
END PLOT END OPERATOR

OPERATOR: MOVE-2-C
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1,
Numerical$ is (SIPE+ -2 Numericall),
Numerical6 is (SIPE+ 2 Numerical3),
Numerical7 is (SIPE+ 0 Numerical2),
Numerical8 is (SIPE+ 0 Numericald4), River-bank? ;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank?2)
(NOT (STATE Numerical6 Numerical8 Numerical5 Numerical7
River-bank1))
(LEVEL>= Cannibals River-bank2 2)
(OR (LEVEL Missionaries River-bank1 0)
(LEVEL>= Missionaries River-bank1 Numerical6));
PLOT:
PROCESS
ACTION: ROW-2-C
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Cannibals River-bank1 2)
(STATE Numerical6 Numerical8 Numerical5 Numerical7 River-bank1);
END PLOT END OPERATOR

OPERATOR: MOVE-1-C
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1,
Numerical$ is (SIPE+ -1 Numericall),
Numerical6 is (SIPE+ 1 Numerical3),
Numerical7 is (SIPE+ 0 Numerical2),
Numerical8 is (SIPE+ 0 Numerical4), River-bank?2;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank2)
(NOT (STATE Numerical6 Numerical8 Numerical5 Numerical7
River-bank1))
(LEVEL>= Cannibals River-bank2 1)
(OR (LEVEL Missionaries River-bank1 0)
(LEVEL>= Missionaries River-bank1 Numerical6));

39

PLOT:
PROCESS
ACTION: ROW-1-C
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bankl;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Cannibals River-bank1 1)
(STATE Numerical6 Numerical8 NumericalS Numerical7 River-bank1);
END PLOT END OPERATOR

OPERATOR: MOVE-2-M
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1,
Numericals is (SIPE+ -2 Numerical2),
Numerical6 is (SIPE+ 2 Numerical4),
Numerical7 is (SIPE+ 0 Numericall),
Numerical8 is (SIPE+ 0 Numerical3), River-bank2 ;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank2)
(NOT (STATE Numerical8 Numerical6 Numerical7 Numerical5
River-bank1))
(LEVEL>= Missionaries River-bank2 2)
(OR (LEVEL Missionaries River-bank2 2)
(LEVEL<= Cannibals River-bank2 Numerical5)),
(LEVEL<= Cannibals River-bankl Numerical6);
PLOT:
PROCESS
ACTION: ROW-2-M
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Missionaries River-bank1 2)
(STATE Numerical8 Numerical6 Numerical7 Numerical5 River-bank1);
END PLOT END OPERATOR

OPERATOR: MOVE-1-M
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bankl1,
Numericals is (SIPE+ -1 Numerical2),
Numerical6 is (SIPE+ 1 Numerical4),
Numerical7 is (SIPE+ 0 Numericall),
Numerical8 is (SIPE+ 0 Numerical3), River-bank?2;
PRECONDITION: (OPPOSITE-BANK River-bank1 River-bank2)
(NOT (STATE Numerical8 Numerical6 Numerical7 Numerical5
. River-bank1))
(LEVEL>= Missionaries River-bank2 1)
(OR (LEVEL Missionaries River-bank2 1)
(LEVEL<= Cannibals River-bank2 Numerical5)),
(LEVEL<= Cannibals River-bankl Numerical6);
PLOT:
PROCESS
ACTION: ROW-1-M
ARGUMENTS: Numericall, Numerical2, Numerical3, Numerical4, River-bank1;
EFFECTS: (ON Two-People-Boat River-bank1)
(PRODUCE Missionaries River-bank1 1)
(STATE Numerical8 Numerical6 Numerical7 Numerical5 River-bank1);
END PLOT END OPERATOR

________________ Causal Theory

CAUSAL-RULE: On-Bank-Not-On-Other-Bank

40

T

ARGUMENTS: Boatl, River-bank1, River-bank2;

TRIGGER: (ON Boatl River-bank1);

PRECONDITION: (ON Boatl River-bank2) (OPPOSITE-BANK River-bank1 River-bank2);
EFFECTS: (NOT (ON Boatl River-bank2));

END CAUSAL-RULE

CAUSAL-RULE: Produce-and-Consume-Cannibals
ARGUMENTS: Cannibals, River-bank1, Numericall, River-bank2;
TRIGGER: (PRODUCE Cannibals River-bank1 Numericall);
PRECONDITION: (OPPOSITE-BANK River-bankl River-bank2)
EFFECTS: (CONSUME Cannibals River-bank2 Numericall);
END CAUSAL-RULE

CAUSAL-RULE: Produce-And-Consume-Missionaries
ARGUMENTS: Missionaries, River-bank1, Numericall, River-bank?2;
TRIGGER: (PRODUCE Missionaries River-bank1 Numericall);
PRECONDITION: (OPPOSITE-BANK River-bankl River-bank?2)
EFFECTS: (CONSUME Missionaries River-bank2 Numericall);
END CAUSAL-RULE

STOP

B S e s EE L S Problem =====—====================

(DEFINE.PROBLEM)
PROBLEM: MC-Problem

GOAL: (MOVE-EVERYBODY)
END PROBLEM

STOP

#U.5. GOVERNMENT PRINTING OFFICE: 1994-610-126-50084

41

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

‘a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.

